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ABSTRACT 
Metrics for evaluating the quality of a human-robot interface 
are introduced. The autonomy of a robot is measured by its 
neglect time. The robot attention demand metric measures 
how much of the user’s attention is involved with instructing 
a robot. The free-time and fan-out metrics are two ways to 
measure this demand. Each of them leads to estimates of the 
interaction effort. Reducing interaction effort without 
diminishing task effectiveness is the goal of human-robot 
interaction design. 
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1. INTRODUCTION 
Autonomous robots that can perform a variety of tasks with 
no human intervention are an interesting but ultimately 
marginal goal. What we really want are robots that can do 
what we want when we want it, not whatever they want 
whenever they want it. We are not interested in producing 
alternate life-forms. We are interested in effective servants. 
We want devices that will leverage human attention and 
human ability.  In this paper we ignore the leveraging of 
human physical abilities and focus on the leverage of human 
attention.  

In this paper we present a series of metrics for measuring the 
effectiveness of robots as servants of their human masters. In 
particular we are looking for measures of interface 
effectiveness that capture our desires to leverage human 
attention 

The first metrics are those that measure task effectiveness 
(TE). Task effectiveness is some measure of how well a task 
is actually performed. At the end of the day we care mostly 
about getting some task done. In driving or navigation 
scenarios we might measure effectiveness as the time 
required to get from point A to point B. In search tasks we 
could measure the time to find all targets or the number of 
targets found in a given amount of time. In an assault task we 
might measure targets destroyed and losses taken.  

Ultimately task effectiveness measures are key to 
successfully designing and evaluating human-robot teams. 

However, task effectiveness measures do not shed any insight 
on how to improve the human-robot interface or how that 
interface might be modified to increase the effectiveness. We 
believe that metrics must be based in a framework that guides 
design. We are looking for an engineering approach that 
leads us through a space of design alternatives to a human-
robot interface that enhances the task effectiveness of the 
team. 

In this paper we will discuss six interrelated metrics that can 
guide the design of human-robot interaction. They are task 
effectiveness (TE), neglect tolerance(NT), robot attention 
demand(RAD), free time(FT), fan out (FO) and interaction 
effort (IE). These metrics are somewhat generic and are 
instantiated differently for different robot tasks. However, 
together they provide a framework for thinking about 
interaction design. 

2. TASK EFFECTIVENESS 
As mentioned earlier, task effectiveness is a measure of how 
well a human-robot team accomplishes some task. There are 
a variety of such metrics and for the purpose of our 
framework we do not care what metrics are chosen. There are 
time-based metrics that attempt to maximize the speed of 
performance, error metrics that attempt to minimize mistakes 
or damage, coverage metrics that measure how much of some 
larger goal is achieved, as well as other possible metrics. The 
overarching goal is that effectiveness is maximized, but the 
details are task specific. 

In some of the scenarios presented below, we will need to 
differentiate between overall task effectiveness and current 
task effectiveness. Overall task effectiveness is best measured 
after the task is complete. An example would be the time 
required to accomplish the task. In many situations we need a 
measure of current task effectiveness, which is the 
effectiveness of the robot right now. Such a measure might 
be the speed with which the robot is closing the distance to a 
goal. The problem with measures of current task 
effectiveness is that they can be very wrong. A robot might 
be getting closer to the target very rapidly and yet be 
wandering into a cul-de-sac from which it will need to back 
out. It currently appears to be effective but on the overall goal 
it is making negative progress.  

. 

 
3. NEGLECT TOLERANCE 
A very important metric in measuring the autonomy of a 
robot with respect to some task (and corresponding task 

 



effectiveness metric) is the robot’s neglect tolerance (NT). 
Neglect tolerance is a measure of how the robot’s current task 
effectiveness declines over time when the robot is neglected 
by the user. We hypothesize that for a given robot and a 
given problem space there is a characteristic neglect curve 
such as that shown in figure 1.  
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Figure 1. – A Characteristic Neglect Curve 

This curve shows that the current task effectiveness of the 
robot declines  as a function of the time since the user last 
paid attention to the robot.  For a simple navigation problem 
we can define current task effectiveness as the speed with 
which the robot is making progress towards a goal. We can 
establish an acceptable minimum effectiveness threshold and 
using the characteristic neglect curve we can define the 
neglect tolerance as the time that can expire before the 
robot’s effectiveness drops below the acceptable minimum. 
This is shown in figure 2. 
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Figure 2 – Neglect Time 

3.1 An Artificial Robot World 
A simple robot world is helpful in illustrating the nature of 
neglect. Consider the world shown in Figure 3. There is a 
robot (upper left), a target (lower right) and trees and rocks 
that form obstacles to movement.  
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Figure 3 – Simple Robot World 

A very simple robot accepts a compass direction from the 
user and will travel in that direction until it reaches an 
obstacle in which case it stops and waits. We can also equip 
our robot with an odometer so that the user can set a desired 
distance to travel before pausing for further instruction. Our 
current task effectiveness measure is the speed of travel from 
start to target. This robot has some degree of autonomy in 
that it can move without instruction and can sense when it 
can go no farther and has a limited sense of distance.   
Designing robots with the ability to diagnose when they need 
assistance is an area of current and ongoing research. 

The gray line shows one possible path to the target with three 
numbered segments. For each segment the user can set a 
direction and then neglect the robot and go do other things. 
The neglect time depends upon the speed of the robot and the 
distance to the turn to segment 2. On path segment 1, 
however, it is possible that the robot might drift to its left and 
encounter the tree in which case it will stop much earlier. It is 
also likely that the robot odometer is inaccurate and the 
segment will end early or late. 

In the case of this simple robot the ideal neglect time is the 
time to reach the next turning point. The actual neglect time 
may vary depending upon encountered obstacles. For any 
given segment the neglect curve is as shown in Figure 4. 

 
Figure 4 – Single Segment Neglect Curve 

If we assume that the distance to an obstacle has a Gaussian 
distribution about some mean distance then the average 
neglect curve over a number of segments will be similar to 
that shown in figure 1.  



3.2 Task Complexity 
This simple robot world also illustrates the role of task 
complexity. If we take our simple world and scale it up to 
thousands of rocks and trees spread over a larger area, the 
neglect curves would remain the same as long as the density 
of obstacles (obstacles per unit area) remains the same. If, 
however, we increased or decreased the density of obstacles, 
then the neglect curves will change as the distribution of time 
to stopping changes. Neglect curves are also a function of 
task complexity, as shown in figure 5.  That neglect curves 
follow this hypothesized shape has been validated in [1] and 
used by [2]. 
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igure 5 – Neglect and Task Complexity 

In our simple robot world complexity is a function of 
obstacle density. In other worlds this may be much more 
complicated. Sensor error, active obstacles such as other 
vehicles, and uneven terrain that modifies vehicle speed can 
all contribute to the complexity of the task.  

3.3 Measuring neglect tolerance 
Neglect tolerance is our basic mechanism for measuring the 
autonomy of a robot. The amount of time that a human can 
ignore a robot has a lot to do with the attention leverage that 
the robot can provide.  This attention leverage is important 
for two reasons.  First, attention leverage allows an operator 
to manage multiple tasks; this is important for such typical 
tasks as simultaneously guiding the robot through a world 
and looking for some target (such as a victim in a search-and-
rescue task [3].  Second, attention leverage allows an 
operator to manage multiple robots which is an important 
special case of managing multiple tasks. 

We have identified two ways to measure neglect tolerance. 
The first is a premeasured average neglect time. We can 
measure this by placing a robot at some random location in a 
problem world and giving it a random goal to achieve. We 
then can measure the amount time that the robot is effective, 
that is, the elapsed time during which the robot makes 
progress towards that goal before dropping below the 
effectiveness threshold. In our simple robot world this is 
equivalent to placing the robot and target at random locations 
and measuring the time before the robot stops. The nice thing 

about this approach is the neglect tolerance is a simple 
measure of the robot capability and the task complexity.  

Our experiments, however, have shown that neglect tolerance 
is not quite so simple. There is an interaction between neglect 
tolerance, the user interface and the global problem space. 
Frequently the users will detect global problems, such as the 
robot wandering into a cul-de-sac, and will intervene before 
the robot itself detects a problem.  This problem is partly 
caused by the use of estimates of current task effectiveness 
that differ from the human’s perception of task progress.  An 
alternative neglect tolerance measure that relies on the 
human’s estimate of task progress is to measure actual active 
usage of the robot by a user. In this case neglect tolerance is 
measured as the time between some user instruction and 
either dropping below effectiveness threshold or some new 
user instruction. This leads to more accurate neglect 
tolerance, but now is no longer independent of the user. For 
example the user’s trust in the robot’s autonomous abilities 
has a lot to do with such neglect measures. If the user does 
not trust the robot they will intervene much sooner. The 
impact of trust on neglect tolerance needs further study.  

3.4 Increasing  NT 
An obvious goal is to increase the neglect tolerance of a 
robot. One way to do this is to increase its intelligence and 
autonomy. If our simple robot had some rudimentary vision 
capability, it might easily see its way around a tree and thus 
keep making progress without human intervention. Thus 
neglect tolerance is increased. As we will show later, 
increasing neglect tolerance can increase the leverage of 
human attention, but not necessarily so. 

Fortunately, much work has been done, albeit indirectly, in 
the robotics community on designing neglect tolerant robots.  
This work has been necessary for designing robots that work 
under conditions of high communications latency.  Since 
communication latency is analogous to attentional neglect, 
techniques such as safe-guarding [4,5], waypoint-navigation, 
and shared control [6,7] are important. 

Solely focusing on NT has other problems. In our simple 
robot world we can increase NT just by slowing down the 
robot. If it goes slower, it will take more time to reach a 
stopping point and thus can be neglected longer. However, in 
our task effectiveness measure of speed to target, this 
approach is very poor. If, however, TE was measured as 
number of rocks and trees studied along the way, slowing 
down the robot might be a very effective solution. Although 
measuring neglect  tolerance is an important step  to 
improving a human-robot team, other metrics are also 
necessary for creating successful designs. 

 



4. ROBOT ATTENTION DEMAND 
Since we are trying to increase the leverage that a robot 
offers to a human-robot team, we should measure how much 
attention a robot is demanding. We call this robot attention 
demand or RAD. This is a measure of the fraction of total 
task time that a user must attend to a given robot. We define 
RAD as a relationship between NT and something we call 
interaction effort (IE). Interaction effort is a key component 
in our attempts to improve the human-robot interaction. A 
simplistic view of IE is the amount of time required to 
interact with the robot. We will discuss the nature of IE in 
more detail later. The relationship between these three 
measures is defined as follows: 

NTIE
IERAD
+

= . 

RAD is a unitless quantity that represents the fraction of a 
human’s time that is consumed by interacting with a robot.  
The numerator is the amount of effort that the user must 
expend interacting with the robot and the denominator is the 
total amount of effective time of the robot. If IE is small 
relative to NT then the RAD will be quite small. In the case 
of teleoperated robots or simple driving a car, NT is very 
small and thus RAD approaches 1. The goal of a good 
human-robot interface is to reduce RAD so that the user can 
focus on other things besides interacting with the robot.  
Reducing RAD can be done by increasing NT or decreasing 
IE. 

Increasing NT will not always decrease RAD because NT 
and IE are not independent. For example, we could create a 
robot that can accept predicate logic descriptions of a world 
and similar predicate logic statements of a desired behavior. 
Such a robot might reason independently and function quite 
well for an extended period of time (higher NT). However, in 
many scenarios the effort required to formulate robot 
instructions as predicate logic would increase IE to the point 
where the NT gains are irrelevant and RAD is actually much 
worse.   

Another example of how increasing NT does not always 
decrease RAD is one that is experienced by many roboticists.  
Creating an autonomous robots requires extensive 
engineering, programming, re-engineering, and 
reprogramming.  The result is that the robot may be fairly 
autonomous --- it may have a high NT --- but to improve the 
robot’s performance, the designer must re-engineer and 
reprogram the robot.  Such re-engineering is a form of 
interaction that takes a tremendous amount of effort.  As a 
result, the “up time” where the robots operate autonomously 
and can be neglected is a small fraction of the time spent by 
the operator on the robot. 

4.1 Free time 
A metric related to RAD is the user’s free time (FT). This is 
the fraction of the task time that the user does not need to pay 
attention to the robot. We define free time as: 

RADFT −= 0.1 . 

Free time is interesting not only because it is a measure of the 
attention leverage that a robot provides, but it also gives us a 
mechanism to measure RAD. If the user has free time, then 
that free time can be used on some alternate task. One way to 
measure free time is to give the user a robotic task and some 
other secondary task. In our simple robot world we can give 
the user the task of guiding the robot from start to target. 
However, because the robot wheelbase can only travel so 
fast, the time to target will not change with most 
improvements of the human-robot interface. If, however, we 
asked the user to count the number of purple-tailed, 
bullfinches nesting in the trees along the way we could 
measure how much of the user’s attention was demanded by 
the robot. Finding more bullfinches without increasing the 
time to target would mean that RAD had been reduced.  

 For the kind of environments addressed in this paper, there is 
usually another task that is of importance upon which the 
user should spend their time. This might include surveillance, 
finding victims of a disaster [3], threat detection, or surveying 
the terrain. What we would like, however, is a means for 
understanding the RAD of our human-robot team in a task 
independent way. A human-robot solution with a low RAD 
can perform many secondary tasks.  This assertion has been 
validated in work presented in [6]. 

Actually measuring free time can be hard because we don’t 
actually know when the user is doing nothing. However, we 
can produce surrogate measures for FT that will allow us to 
detect when RAD has been reduced. In many cases we do not 
actually care what the free time measure is. We only care that 
some change in our human-robot interface has increased FT 
and reduced RAD. From the psychometric world we can 
import a number of attention consuming tasks that we can 
measure as a surrogate for FT such as performing mental 
arithmetic [8], carrying on a fabricated cell-phone 
conversation [9], classifying objects [10], and reading email 
[11]. We can use any of these as a secondary task and 
measure increases in their performance or frequency as an 
indicator of reduction of RAD. For example, Crandall had 
subjects perform mental arithmetic while driving a robot 
under two teleopeartion schemes [6].  In experiments, the 
more autonomous teleoperation scheme allowed users to 
perform many more secondary tasks (a statistically 
significant difference with very few subjects), and with 
marginally higher performance.  

5. FAN-OUT 
One way to leverage human attention is to allow a user to 
operate multiple robots simultaneously. This generally should 



allow the human to accomplish some tasks more quickly and 
effectively.  For example, on tasks such as surveillance or 
exploration, multiple robots can cover a space more 
effectively than a single robot. 

We propose to measure the effectiveness of a human-robots 
team using what we call fan-out. Fan-out is an estimate of the 
number of robots that a user and effectively operate at once. 
The fan-out metric is defined in terms of RAD as 

IE
NTIE

RAD
FO +

==
0.1

. 

 

From the FO equation we see that FO increases as neglect 
tolerance becomes large relative to interaction effort. The 
more neglect tolerant a robot becomes, the more robots a 
single user can operate. This equation, however, does not tell 
the whole story. As fan-out increases, interaction effort also 
increases, as will be discussed in the next section. 

This means that if a person wants to be able to control 
multiple robots with given capabilities, they should spend 
their design effort in making IE low.  One of the attractive 
things about fan-out is that it can be measured. There are two 
ways of measuring fan-out that yield similar results, but on 
different scales. The first approach measures the performance 
plateau. If we consider the graph in figure 6 we see that task 
effectiveness should increase as more robots are added to the 
task. However, at some point the user becomes overloaded 
and adding another robot does not improve the performance. 
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Figure 6 – Fan-out performance plateau 

One of the problems with the performance-plateau method of 
measuring fan-out is that it requires a large number of trials. 
To get a good fan-out estimate, it is necessary to run multiple 
task trials for each potential number of robots. However, it 
does give a very realistic estimate of fan-out. 

A second approach to measuring fan-out is the average robot 
activity. In this approach, the user is given more robots than 
they can realistically use. While the task is progressing we 
periodically count the number of robots operating above the 
effectiveness threshold. We take the average of these counts 
as a measure of fan-out.  

There are several physical and cognitive constraints that limit 
how well a system can achieve the theoretical fan-out limit.   
The first constraint we call task saturation. This is when the 
task, not the user becomes saturated. The measured fan-out is 
lower than the actual RAD would indicate because it is not 
possible to bring more robots to bear on the current task.  

Task saturation can occur for two reasons.  First, it can occur 
when the task is so simple that dedicating a lot of robots to it 
will not improve performance.  Consider for example our 
sample robot world where there are only 2 targets.  No matter 
how effective our interface or high our neglect tolerance, no 
more that 2 robots are required to get the job done. Sending 
multiple robots after the same target is pointless in this case.   
The second cause of task saturation occurs when the task 
space is too crowded. If all of the robots start in the upper left 
corner of our world, it is hard to get many of them moving 
because they run into each other. In search tasks, the search 
perimeter imposes a limit on the number of robots that can be 
applied to the task. The task saturation limits are important in 
understanding how to apply a human-robots team to a task, 
but they get in the way of understanding the human-robots 
interface. 

The second constraint that limits fan-out is caused by 
limitations of human cognition, primarily memory.  In 
controlling multiple robots, the human must remember robot 
state information, interface modes, robot abilities, etc.  This 
places demands on working memory since only a limited 
number of pieces of information can be stored in short-term 
memory and since only a limited number of mental models 
can be active in long-term memory at a time.  We will discuss 
how these limitations affect FO via interaction effort in 
subsequent sections. 

 
6. INTERACTION EFFORT 
As can be seen from the free-time and fan-out equations the 
human-robot team can be improved by either increasing the 
robot’s neglect tolerance or by reducing the interaction effort 
(IE). Neglect tolerance is primarily a function of robot ability. 
Therefore, reducing interaction effort (IE) is the key problem 
in improving the human-robot interface. Being able to 
measure interaction effort and particularly to determine when 
that effort has been reduced by a new interface design is 
critical to the development of the types of human-robot 
systems that serve our needs.  

In most cases interaction effort is directly related to the time 
necessary to interact with a given robot. However, the 
difficulty lies in identifying exactly when a user is 
interacting. Interaction effort is more than just the time 
required to manipulate input devices. In most scenarios, 
interaction effort is dominated by cognitive rather than 
physical effort. Without “mind probe” technology we cannot 
tell if the user is day-dreaming or focused on robot control. 



Eye-tracker experiments have demonstrated significant 
differences in gaze patterns between various behavioral states 
[12]. However, eye-tracking is hard to deploy in many 
situations where robots are useful. 

We resolve the problem of measuring interaction effort in 
two ways The first is to focus not on interaction time, but on 
interaction effort. This is a unitless measure of how much 
effort a user must put into interacting with their robots. What 
we are interested in is relative values of the interaction effort. 
How much less effort is required using interface B instead of 
interface A. Though we cannot pin down the units, we do 
have a comparative tool for measuring progress.  

The second component of our approach is to measure IE 
indirectly using the free-time and fan-out measures along 
with their corresponding equations. As we have shown we 
can measure neglect tolerance and, using secondary task 
performance, we can get a measure that is related to free-
time. Using NT and FT, and the free-time equation we can 
compute an estimate of interaction time: 

FT
FTNTIT )1( −

= . 

Note that we do not actually have a measure of free-time, we 
only have a measure of secondary task performance (STP).  
What we really have then is an estimate of interaction effort 
using a similar equation. 

STP
STPNTIE )1( −

= . 

This estimate of IE can now be used to compare various 
interfaces. 

We can also use our fan-out measures, neglect tolerance and 
the fan-out equation to produce an estimate of interaction 
effort by solving for IE 

1−
=

FO
NTIE . 

These now give us two indirect means for measuring 
interaction effort that we can use in evaluating human-robots 
interfaces. Note that the various measures of IE are not 
directly comparable because they depend on other measures 
that have differing characteristics.   

6.1 Components of Interaction Effort 
When designing human-robots interactions our key problems 
are to increase neglect tolerance and reduce interaction effort. 
Interaction effort is not monolithic. We have identified at 
least four components to the interaction effort. They are 
subtask selection, context acquisition, solution planning and 
expression of robot directives. We will discuss each of these 
components in turn.  These components exist for the general 

case of an arbitrary secondary task as well as for the special 
case of managing multiple robots.   

6.2 Subtask Selection 
Task selection is most important when working with multiple 
robots. Having completed an interaction with a robot the user 
must next decide which robot will receive assistance. There 
are several approaches to the problem of subtask selection 
that can reduce this effort. One simple approach is to have an 
automatic round-robin selection mechanism. This is where 
the system automatically chooses each robot in turn and 
presents that robot to the user. The interactive effort from 
subtask selection goes to zero, but the task effectiveness and 
fan-out may suffer because the robots in most need of human 
attention may not get that attention when they need it. This is 
like the building security system that sequentially presents 
security camera images to the guard. The cameras all get 
equal time but there is a strong likelihood that a fast intrusion 
will escape the guard’s attention. 

A second approach is to show the data (or a summary) on all 
of the robots to the user and let the user select. An interface 
that supports such interaction has been developed by Scholtz 
[13].  User selection of the next robot can produce better 
selections, but will increase interaction effort. Preliminary 
experiments strongly suggest that interaction effort increases 
with fan-out. Obviously searching for the right robot to 
service will be on the order of log(FO) or FO. Getting the 
best robot to service could be FOlog(FO).  

A third approach is to provide an automatically computed 
measure of attention need. The user is then directed to the 
robot with the most perceived need. This would be like 
showing the security guard the images that have detected the 
most movement in the recent past. This can bring selection 
effort back to near zero, but can also have problems. If the 
attention-need metric is not a good one, then it may actually 
be worse than round-robin. If for example the attention 
metric is lack of progress and one robot has a bad wheel, the 
best approach may be to abandon the robot, but the attention 
metric will constantly show that poor robot to the user. 
Similarly if there is a wind storm, the motion-based camera 
attention algorithm will constantly images of waving trees in 
the parking lot to the security guard. 

Techniques for assisting the user in making the subtask 
selection will be important to reducing the interaction effort. 
Most approaches to this problem will involve increasing the 
salience of robots that most need attention.  It is interesting to 
note that the techniques for automating subtask selection are 
analogous to Sheridan’s 10 levels of sharing responsibility 
between a human and an automated system in supervisory 
control [14].  Additionally, work on management policies has 
direct bearing on this problem [15]. 



6.3 Context acquisition 
Context acquisition comes when the user must switch from 
one subtask to another. This arises both when operating many 
robots as well as when operating a single robot while 
performing other tasks. When the user’s attention is switched, 
the user must take a moment to understand the situation of 
the new robot that has received attention.   Although part of 
this understanding is required for proper subtask selection, 
many aspects of context acquisition must be obtained after 
selection occurs.  For example, when the interface draws 
attention to a particular robot, the human must still acquire 
context (e.g., diagnose the problem) before controlling the 
robot. 

There are multiple issues in context acquisition. A key 
approach is the externalization of memory. For example, 
when driving robots through their front-mounted camera, 
switching to a new robot will cause memory problems for the 
user. The user sees what the camera sees, but they must 
remember, or search again (via, for example, range sensors), 
for what is left, right or behind the robot. Making such 
information visible in the interface should reduce context 
acquisition time. 

There is a serious problem with heterogeneous robots 
because not only must the user reaquire knowledge of a 
robot’s situation, but must also mentally adjust to the 
different abilities of the current robot.  This mental 
adjustment includes loading relevant state information into 
short-term memory and activating relevant mental models 
from long-term memory. 

We have only scratched the surface of the context acquisition 
issues and how they affect interaction effort. It is clear the 
context acquisition effort will go up as fan-out goes up. 
Automatic selection will not make the context switch go 
away. There is a possibility that automatic subtask selection 
may actually increase context acquisition time because the 
user has no understanding of why the task was selected. This 
problem has been identified as a key factor in the failure of 
some automation systems [16]. The context acquisition 
problem is probably the largest contributor to an upper bound 
on fan-out regardless of robot capability. 

6.4 Planning 
Once a user has selected a robot, understood the robot’s 
situation, the user must plan what instructions the robot must 
be given. This depends very little on the number of robots but 
rather on the complexity of the task, the intelligence of the 
robot and the user’s understanding and trust in that 
intelligence.  

As the complexity of a task increases, the amount of effort 
required for the user to come up with a robot’s next direction 
is increased. This interaction effort can be decreased, 
however, if the robot or the interface can supply some of the 
planning information. In our simple robot world the user 

interface could show a possible path to the target that was 
automatically calculated. The user’s planning problem is now 
greatly simplified. However, if the interface is capable of 
completely solving the problem, then the human is not 
required at all. Usually there are issues that the software or 
the robot’s sensor processing cannot resolve. If the software-
supplied solution is not appropriate then the user must plan 
on their own or may even be distracted by the erroneous plan 
presented.  Such issues have been identified in other assisted 
planning domains [17]. 

In addition to the increase in planning difficulty caused by 
increasing task complexity,  planning can also be made more 
difficult when robots become more sophisticated.  This 
occurs because communication may be more involved, trust 
and expectations may be misplaced, and developing a correct 
mental model of possible robot behaviors may become 
prohibitive. 

Not only must the problem be solved (find a path to the 
target) but the user must also understand the robot’s 
capability. We have found that neglect tolerance goes down 
when the users have less trust in the intelligence of the robot. 
It also makes a difference if the user clearly understands the 
nature of the robot’s abilities. The robot may be powerful but 
if the capabilities are obscure then the users will ignore them 
and planning will still be done by the user. The user will also 
set more conservative goals for the robot and the neglect 
tolerance will be reduced. 

6.5 Expression 
Having selected a robot, acquired the context, and planned a 
solution, the user must express intent to the robot. Even at 
this phase, the physical effort is rarely the dominant factor. 
As a result of planning the user has conceived of some action 
that the robot should take in the physical world. The user 
must now translate that desired physical behavior into inputs 
to the human-robots interface software. Don Norman has 
characterized this translation from a planned solution to 
actual control inputs by the user as the “Gulf of 
Execution”[18]. This translation is what requires most of the 
effort.  

We believe that a basic problem in many human-robot 
interfaces is that user intent must be expressed in terms of 
robot control values rather than in terms of intended action in 
the physical world. This requires the user to map physical 
world intent backwards to the control values that will 
produce the desired result. This mapping from problem space 
to control space is a key source of interaction effort. We 
believe that the human-robot interface should mitigate or 
automatically perform such mappings and thus reduce the 
effort required. 

 



7. SUMMARY 
The obvious goal of any human-robots interface is to increase 
the effectiveness of the team in accomplishing some task. We 
believe that the keys to this effectiveness are increasing the 
neglect tolerance of the robots and reducing the interaction 
effort of the interface. We have captured this in the free-time 
and fan-out metrics. We have shown how these two metrics 
along with neglect tolerance can be measured and then used 
to produce estimates of interaction effort that can be used to 
chart the progress of improvement in human-robots interface 
design. Lastly we have broken down interaction effort to 
identify where and how it can be reduced. 
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